Scientific Bulletin of the Odesa National Economic University 2023, 11-12, 220-225

Open Access Article

Improvement of the information and analytical base of enterprise management system decisions

Obniavko Vladyslav
PhD student, Odesa National University of Economics, Odesa, E-mail:vobniavko@gmail.com, ORCID ID: https://orcid.org/0000-0002-6606-9436

Cite this article:

Obniavko V. (2023) Improvement of the information and analytical base of enterprise management system decisions. Ed.: V.V. Kovalenko (ed.-in-ch.) and others [Vdoskonalennia informatsiino-analitychnoi bazy rishen systemy upravlinnia pidpryiemstvom; za red.: V.V. Kovalenko (gol. red.)], Scientific Bulletin of the Odesa National Economic University (ISSN 2313-4569), Odesa National Economics University, Odesa, No. 11-12 (312-313), pp. 220-225.

Abstract

Purpose. This publication explores the theoretical foundations of digital equipment and technology development, emphasizing the proposal of a typology for information and analytical base of enterprise management system decisions. Method. The study systematically categorizes elements within the for information and analytical base of enterprise management system decisions, substantiating content and resources. It employs a systemic approach to investigate the development of intellectual business, emphasizing diverse typologies based on defined objectives, particularly within the wine industry in the digital economy. Results. Identified are features and potentialities associated with the development of an information management system, analytical tools, intellectual and analytical business tools, forecasting and modeling, e-commerce, and marketing. The data management system acts as a centralized tool governing the digital economy and security, implementing a program for collecting, optimizing, and organizing the information base. Intelligent systems, integral to business analytics, connect enterprises with real-time data, facilitating informed decision-making on production, finance, marketing, and critical business aspects. Scientific novelty. The study contributes by presenting the data management system as central in the digital economy and security, offering insights into information base collection, optimization, and organization. Integrating intelligent systems with business analytics adds a novel dimension. Practical importance. The research explores practical utilization of information and analytical base elements for winery management systems, employing interconnected tools like Artificial Intelligence, Big Data, and other digital instruments. Additionally, it generalizes trends in automated business processes, enhancing the information and analytical base of enterprise management system decisions with practical implications for enterprises in the digital economy.

Keywords

enterprise management system, informational and analytical base of decisions, digital technology, automated business processes, big data, winemaking.

JEL classification: М150; O320; DOI: https://doi.org/10.32680/2409-9260-2023-11-12-312-313-220-225

UD classification: 634.8:330.341.2

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

  1. Androshchuk, O., Cherevko, R., Petrushen, M., & Holoborodko M. (2023). Current approaches to building information infrastructure based on cloud technologies using reference architecture. Modern Information Technologies in the Sphere of Security and Defence, 1 (46).Retrieved from: http://sit.nuou.org.ua/article/view/280723 [In Ukrainian].
  2. Vyhovska, N., Polchanov, A., Lytvynchuk, I., Horodyskyi, M., & Polchanov, O. (2023). IT business as an object of financial management. Economics, Management and Administration, 3(105), 159–165. Retrieved from: http://ema.ztu.edu.ua/article/view/288291 [In Ukrainian].
  3. Koshlan, O. A. & Fedoriienko V. A. (2021). Analiz suchasnykh heoinformatsiinykh system za danymy suchasnykh analitychnykh ahentstv. Interaction of society and science: problems and prospects. International Science Group. Retrieved from: https://shorturl.at/lxC08 [In Ukrainian].
  4. Zaporozhets, T., & Tsymbalenko, Y. (2023). The Security of Information Systems as a Factor in the Effectiveness of Network Management. Public Administration Aspects, 11(3), 25-29. DOI: https://doi.org/10.15421/152331 [In Ukrainian].
  5. Tatarinov V. V. (2022). Suchasni intelektualni tekhnolohii v systemakh upravlinnia. Intelektualni systemy avtomatyzatsii: monograph. Kremenchuk. P. 13-68. Retrieved from: https:// openarchive.nure.ua/items/080f1fb5-8c0a-4e4c-be57-654e1f3c321a [In Ukrainian].
  6. Dotsenko, S. I. & Kharchenko, V. S. (Eds.). (2023). Intelligent cybernetic systems: evolution of principles, theories and security technologies: monograph. Retrieved from: https:// dspace.library.khai.edu/xmlui/handle/123456789/5051 [In Ukrainian].
  7. Gilliland, M., Tashman, L., & Sglavo, U. (2021). Business forecasting: the emerging role of artificial intelligence and machine learning. John Wiley & Sons. Retrieved from: https://shorturl. at/jtQX8
  8. Chase, C. W. (2021). Consumption-based Forecasting and Planning: Predicting Changing Demand Patterns in the New Digital Economy. John Wiley & Sons. Retrieved from: https:// shorturl.at/mnAI0
  9. Information sources and analytical tools in the field of public procurement. (2023). Retrieved from: https://shorturl.at/bglw9 [In Ukrainian].
  10. Research and Markets. (2023). Mobile Commerce Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028. Retrieved from: https://www. researchandmarkets.com/report/mobile-commerce#reld1-4845725
  11. Tretiak, V., Holubnychyi, D., Kolomiitsev, O., Mehelbei, H., Voznyi, O., & Filipenkov, O. (2020). Matematychna model ranhovoho pidkhodu. Collection of Scientific Papers ΛΌГOΣ, 116- 122. DOI: https://doi.org/10.36074/25.12.2020.v1.40 [In Ukrainian].
  12. Kolomiitsev, O., Holubnychyi, D., Rybalchenko, A., Tretiak, V., Osiievskyi, S., Voznyi, O., Balabukha, O., Kachurovskyi, H., Hrichaniuk, O., Halashevskyi, H., Sokova, T., Liubchenko, O., & Liubchenko, O. (2023). Using rank-based honeypots in a transactional system model with database fragment replication for deployment in the cloud. Scientific Collection «InterConf+», 38(175), 326–341. DOI: https://doi.org/10.51582/interconf.19-20.10.2023.030 [In Ukrainian].
  13. Tretiak, V., Kolomiitsev, O., Yevstrat, D., Voroshylov, S., Chmyr, V., Lohvynenko, Ye., Lysytsia, A., & Misiura, V. (2021). Analiz suchasnykh system upravlinnia bazamy danykh. InterConf, (78), 453-465. DOI: https://doi.org/10.51582/interconf.7-8.10.2021.050 [In Ukrainian].
  14. Research and Markets. (2023). Global Data Analytics Market 2023-2027. Retrieved from: https://www.researchandmarkets.com/reports/5514994/global-data-analytics-market-2023- 2027#relc2-5752589

Україна, м.Одеса, 65082
вул. Гоголя, 18, ауд. 110.
(048) 777-89-16
visnik.nauka visnik.nauka@gmail.com

ПнВтСрЧтПтСбНд

 

Flag Counter
 -->